The E-906/SeaQuest experiment

Markus Diefenthaler (UIUC)

47th Annual Fermilab Users Meeting

The SeaQuest collaboration

- Abilene Christian University: Ryan Castillo, Michael Daughertiy, Donald Isenhower, Noah Kitts, Lacey Medlock, Rusty Towell, Shon Watson, Ziao Jai Xi
- Academia Sinica: Wen-Chen Chang, Yen-Chu Chen, Ting-Hua Chang, Shiu Shiuan-Hao
- Argonne National Laboratory: John Arrington, Donald F. Geesaman (co-spokesperson), Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, Paul E. Reimer (co-spokesperson), Brian Tice
- University of Colorado: Ed(ward) Kinney, Joseph Katich, Po-Ju Lin
- Fermi National Accelerator Laboratory: Chuck Brown, Dave Christian, Su-Yin Wang, Jin-Yuan Wu
- University of Illinois: Bryan Dannowitz, Markus Diefenthaler, Bryan Kerns, Hao Li, Naomi C.R Makins, R. Evan McClellan, Jen-Chieh Peng, Shivangi Prasad, Mae Hwee Teo, Yangqiu Yin
- KEK: Shin'ya Sawada

- Los Alamos National Laboratory: Gerry Garvey, Andreas Klein, Mike Leitch, Kun Liu, Ming Liu, Pat McGaughey, Joel Moss
- University of Maryland: Betsy Beise, Kazutaka Nakahara
- University of Michigan: Christine Aidala, Catherine Culkin, Wolfgang Lorenzon, Bryan Ramson, Richard Raymond, Josh(ua) Rubin
- National Kaohsiung Normal University: Rurngsheng Guo
- RIKEN: Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa
- Rutgers University: Ron Gilman, Ron Ransome, Arun Tadepalli
- Tokyo Tech: Shou Miyaska, Kei Nagai, Kenichi Nakano, Florian Sanftl, Toshi-Aki Shibata
- Yamagata University: Yuya Kudo, Yoshiyuki Miyachi

Acknowledgment

The inner structure of the nucleon

A laboratory for sea quarks

The Drell-Yan process

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x_{\mathrm{b}} \, \mathrm{d}x_{\mathrm{t}}} = \frac{4\pi\alpha^2}{9x_{\mathrm{b}} \, x_{\mathrm{t}}} \frac{1}{s} \sum_{q} e_q^2 \left[\bar{q}_{\mathrm{t}}(x_{\mathrm{t}}) q_{\mathrm{b}}(x_{\mathrm{b}}) + q_{\mathrm{t}}(x_{\mathrm{t}}) \bar{q}_{\mathrm{b}}(x_{\mathrm{b}}) \right]$$

beam: valence quarks at high-x

target: sea quarks at low/intermediate-x

Unique sensitivity to sea quarks

Insights into the proton sea

SeaQuest probing the proton sea

Nucleons embedded in nuclei

Do nucleons change their internal properties when

- Is confinement influenced by the nuclear medium?
- Do quarks and gluons play any role in the understanding of nuclear forces?
- Can the model of nuclear forces be replaced by a fundamental theory based on the strong interaction between quarks and gluons?

The EMC effect

The EMC effect in Drell-Yan

The inner structure of a nucleus

nuclear force mediated by meson exchange

• Where are the *nuclear* pions?

The Lam-Tung relation

angular dependence of the Drell-Yan cross-section:

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} \propto 1 + \lambda \cos\left(\theta\right)^2 + \mu \sin\left(2\theta\right) \cos\left(\phi\right) + \frac{\nu}{2} \sin\left(\theta\right)^2 \cos\left(2\phi\right)$$

• Lam-Tung relation: $1 - \lambda = 2\nu$

Angular dependence

measurement in pion DY and proton DY:

 Collinear PDF: only higher order gluon emission can generate deviations

The Boer-Mulders function

transverse-momentum dependent PDF:

$$h_1^{\perp,q}\left(x,\mathbf{p}_T^2\right)$$
 $s_T^i\varepsilon^{ij}p_T^j\frac{1}{M}$

- chiral odd, rather exotic in being naive-time-reversal-odd
 - ← initial (Drell-Yan) and final state (SIDIS) interactions
 - → single-spin asymmetries
- challenging the concept of factorization and universality

The SeaQuest mission

- significant increase in physics reach
- unique access to sea quarks at high-x
- What is the structure of the nucleon?
 - What is $\frac{d}{u}$?
 - What are the origins of the sea quarks?
 - What is the high-x structure of the proton?
 - How are quark spin and orbital motion correlated?
- What is the struture of nucleonic matter?
 - Where are the *nuclear* pions?
 - Is antishadowing a valence effect?
- Do colored partons lose energy in cold nuclear matter?

The SeaQuest Experiment

- continuing a series of high-mass dilepton experiments at FNAL

Proton Beam

slow extraction from MI

2x10¹² protons / s for ~4s spills each minute

beam energy: E-866: 800 GeV → E-906: **120 GeV**

 → 50x luminosity as E-866 (for same spectrometer rate)

Target Table

liquid target flasks:

 H_2, D_2

solid state targets:

C, Fe, W

empty flask, no target

moves between spills

Spectrometer

reused and recycled components

selected updates: new drift chambers, PMT bases for high-rate capability, beam diagnostics, ...

The SeaQuest Spectrometer

- recording dimuon events at high rate (~ 1500 Hz)

Spill Structure

large variations in instantaneous beam intensity → high hit occupancy

beam-line Cherenkov monitor for beam diagnostics:

- → beam diagnostics: measurement of RF-bucket by RF-bucket intensity
- → trigger inhibit: veto on single RF buckets as a function of intensity, ½ beam inhibited due to 10x expected beam/RF-bucket

Duty Factor Measurements

- studying the uniformity of the beam

based on real dimuon events,

affected by coincidence window and saturation

Status of the Analysis

data taking:

02/2009/05after fall shutdownstart of physics runfall shutdowncontinue physics run

Mass (GeV)

presentation of first preliminary physics results at DNP 2014

track and dimuon reconstruction (from small data sample):

Polarized Drell-Yan measurements are the missing component in the global spin program.

E-1027: SeaQuest with polarized beam

E-1039: SeaQuest with polarized target

Transverse-momentum dependent PDFs (TMDs)

- 3D-densities in momentum space
- Gaussian distributions with a width of ~ 0.6 GeV

flavor dependence: d-quark
 TMDs are larger than u-quark
 TMDs

transversely polarized nucleon:

- u-quarks (d-quarks) moving preferentially to the right (left)
- TMDs are distorted in opposite ways for u and d-quarks

The Sivers TMD

 observed in semi-inclusive DIS measurements off transversely polarized proton target:

$$f_{1T}^{\perp,q}(x,\mathbf{p}_T^2)$$
 $-$

- rather exotic in being naive-time-reversal-odd
 - ← initial state interactions in Drell-Yan process
 - → single-spin asymmetries:

$$A_N^{\mathrm{DY}} \sim f_{1T}^{\perp,q}(x_b) \otimes f_1^{\bar{q}}(x_t)$$

- close relationship to quark orbital angular momentum
- challenging the concept of factorization and universality
 - fundamental QCD prediction: $f_{1T}^{\perp,{
 m DIS}} = -f_{1T}^{\perp,{
 m DY}}$
 - remains to be experimentally tested
 - polarized Drell-Yan measurement required

Reestablishing spin at Fermilab

- E-1027: SeaQuest with polarized beam
 - sensitive to beam valence quarks at high-x
 - large effects → size / shape of Sivers TMD

- E-1039: SeaQuest with polarized target
 - sensitive to Sivers TMD for sea quarks
 - hint for substantial role of sea quark Sivers effect in SIDIS data
 - LANL will provide polarized proton (NH3) target by 2015

The SeaQuest mission

unique laboratory for sea quarks at high-x

- → structure of nucleons and nucleonic matter physics running started on February 20th
- → first preliminary physics results expected in fall exciting extensions possible
- → polarized Drell-Yan measurements
- → missing piece in the global spin program
- → unique opportunity for Fermilab